Chapter I
Eg 1.1 N tosses, prob f. How many herds?

$$
\Rightarrow \operatorname{Bin}(r / f, N)=f^{r}(1-f)^{N-r}\binom{N}{r}
$$

Stirling from Laplace:

$$
\begin{aligned}
\frac{\lambda^{\prime} e^{-\lambda}}{\lambda_{!}} & \approx \frac{1}{\sqrt{2 \pi \lambda}} \Rightarrow \lambda_{!}^{\prime} \approx\left(\frac{\lambda}{e}\right)^{\lambda} \sqrt{2 \pi-\lambda} \\
\Rightarrow \log _{2}(r) & \approx r \log _{2} \frac{N}{r}+(N-r) \log _{2} \frac{N}{N-r} \\
& \approx N H_{2}\left(\frac{r}{N}\right)-\frac{1}{2} \log \left[2 \pi N \frac{N-r}{N} \frac{r}{N}\right]
\end{aligned}
$$

1.2

$$
\begin{array}{cccccc}
s & 0 & 0 & 1 & 0 & 1 \\
t & 000 & 000 & 111 & 000 & 111 \\
n & 000 & 001 & 000 & 000 & 101 \\
r & 000 & 001 & 111 & 000 & 010
\end{array}
$$

$P(s \mid r)=\frac{P\left(r_{1} r_{2} r_{3} / s\right) P(s)}{P\left(r_{1} r_{2} r_{3}\right)} \quad$ Assume prior probabilities equal

$$
P(\vec{r} \mid s)=\prod p\left(r_{n} / t_{n}(s)\right)
$$

$$
p\left(r_{n} \mid t_{n}\right)=\left\{\begin{array}{cc}
1-f & r_{n}=t_{n} \\
f & r_{n} * t_{n}
\end{array}\right.
$$

$$
\rightarrow \text { likelihood ratio }=\frac{P(r \mid s=1)}{P(r \mid s=0)}=\prod_{n} \frac{p\left(r_{n} \mid t_{n}(1)\right)}{p\left(r_{n} \mid t_{n}(0)\right)}
$$

$$
=\left\{\begin{array}{lll}
\frac{1-f}{f} & r_{n}=1 & \frac{1-f}{f}>1
\end{array} \quad \text { for } f \frac{1}{2} \frac{1}{2}\right.
$$

Ex $1.2 \quad p_{b}=p_{B}=\underbrace{3 f^{2}(1-f)}_{\text {flips }}+\underbrace{f^{3}}_{3 \text { flips }}=3 f^{2}-2 f^{3} \ll F$

Ex 1.3 for R_{N} code
a) $p_{b}=\sum_{n=\frac{N+1}{2}}^{N} \underbrace{\binom{N}{n} f^{n}(1-F)^{N-n}}_{P(n \quad f(i p=)}$ probability
b) leading term is longest $\approx 2^{N H_{2}\left(\frac{1}{2}\right)} f^{\frac{\mu \mu}{\overline{2}}}(1-f)^{\frac{N-1}{2}}$

$$
\begin{aligned}
& \approx 2^{N}[f(1-f)]^{N / 2} \\
& \approx[4 f(1-f)]^{N / 2} \approx p_{b}
\end{aligned}
$$

Second term is $\sim \frac{f}{1-f}$ times smaller

$$
\Rightarrow \quad N=2 \frac{\log 10^{-15}}{\log 4(1-f)} \approx 68 \approx a \text { bit too big }
$$

At rest order $\binom{N}{N / 2} \approx \frac{2^{N}}{\sqrt{2 \pi N / / 2}} \in$ can get this: $\operatorname{Bincm}(k / K, N)$

$$
\begin{aligned}
\Rightarrow \frac{2}{\sqrt{\pi N / 4}} f(4 f(1-A))^{\frac{N-1}{2}} & =10^{-15} \\
& \Rightarrow N \approx 60.9
\end{aligned}
$$

Black code: Add redundancy to blacks of data rather than one bit at a time z, 4 Morning:

ey $0111 \rightarrow 0111010$

$$
\begin{aligned}
& t=G^{T} \\
& G^{T}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

16 codevords lie in a 7^{-d} space of 2^{7} sptions

Desdiny: Assume BSC
We calld deack by Finding mersage s uhose encoding $t(s)$ is cosest to r
(16 chices)
Easier way: Find bit inside violuted perity cheuts
The violuted circles give the sphdrome
z-bit errors cant be fixal. and fliping them gives 3-bit ervors

$$
\begin{aligned}
G^{\top}=\binom{I}{P} \Rightarrow H & =\left(\begin{array}{ll}
P & I_{3}
\end{array}\right) \quad z=H \cdot r \\
& =
\end{aligned}
$$

Ex 1.4
Codewords (in G) has

$$
\begin{aligned}
H G^{\top} & =\left(\begin{array}{ll}
P & I_{3}
\end{array}\right)\left(\begin{array}{l}
\bar{P}
\end{array}\right) \\
& =\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
& 1 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow r=G^{\top} s+n
$$

\Rightarrow find most probable x s.t. $H_{n}=z$
"Maximum Likelihood Deczeler"

Every vector in \mathbb{F}_{2}^{7} is either a codeword or 1 Flip away from one

Black error:
One or more bits fails to match the sarre:

$$
P_{B}:=P[s \neq \hat{s}]
$$

Bit error:
Average probability that a decoded bit dent match its sauce sit:

$$
p_{b}:=\frac{1}{K} \sum_{k=1}^{K} P\left(s_{k} \neq \hat{s}_{k}\right)
$$

$P_{B} \propto P[2$ or more Flipped $]$ for Hamming $z y$ $O\left(f^{2}\right)$

Rut rate is $4 / 7>1 / 3$ from before

Ex Decade
a) 1101011

b) 0110110

d) 1111111

$$
\Rightarrow z=000 \quad 1111111
$$

1.6 a) p_{B} for Hamming is $\binom{7}{2} f^{2}(1-f)^{7-2}+O\left(f^{3}\right)$

$$
\approx 21 f^{2}
$$

b) $p_{b}{ }^{2 P_{B}}$ for 2 flips is αf^{2} since we reed 2 bits to flo

$$
21 f^{2} \cdot \frac{3}{7}=9 f^{2}+o\left(f^{3}\right)
$$

${ }^{1}$ P(2 Flip) ${ }^{7}$ (\#) of wove bis in that case
because the Hamming cade is symmetric any bit Cinclucling the source) has an equal, $\frac{3}{2}$ chance of Flipping.
1.7 How many n give the zero syndrome?

The x wt zero syndrome are exactly the 16 codewords by lineenty
1.8 Cant have all 3 incorrectly Flipped bits be parity, Since Slipping any 2 usuld rover lead to the "erected" and one being the Sra parity
$\Rightarrow 2$ noise slips implies beck error
1.9

Bipartite graph $\Rightarrow 3 \times 7$ matrix w ones wherever theres
Bipartite graph \Rightarrow error correcting code

30,11 Dodecahedron scale

Any bit slip on pentagonal side still gives 0 synderme
\Rightarrow lowest weight codewords have weight 5

Distance $5 \Rightarrow$ can correct $2 x$ sit 5 lip errors \Rightarrow black error probability goes as $12 \cdot\binom{5}{3} \cdot f^{3}(1-f)^{27}$ Generically is need to be plonar
1.10 For N transmitted bits with ≤ 2 flips

$$
\begin{aligned}
& \binom{N}{2}+\binom{N}{1}+\binom{N}{0} \quad \text { patterns } \\
& N=14 \Rightarrow 91+14+1=106 \\
& M=6 \Rightarrow 2^{6}=64 \\
& 106>64 \Rightarrow \text { cant be 2-error correcting }
\end{aligned}
$$

$$
K=N-M
$$

$$
8=14-6
$$

Linear or nonlinear $2^{N} \cdot\left[\binom{N}{2}+\binom{n}{1}+\binom{N}{0}\right] \leq 2^{N}$
necessary for error correction

$$
S_{+} \cdot S_{n} \leq 2^{N}
$$

1.11 see (30,11) cade before
$1.12 P_{b}\left[R_{3}^{2}\right] \approx p\left[R_{3}\right] \cdot\left(3 p\left[R_{3}\right]+\cdots\right)$

$$
\approx 3\left(3 f^{2}\right)^{2}=27 f^{4}
$$

same message
as R_{q} but
different decoder

$$
P_{b}\left[R_{q}\right] \approx\binom{4}{5} F^{5} \sim 126 F^{5}
$$

better

Chapter 2
Eg 2.1 Joint ensemble ot grams

$$
P(x, y)
$$

Marginalizing over ether var gives some dit t
Ex $2.2 \quad x, y$ not indep in $P(x, y)$
Eg $23 \quad a=\left\{\begin{array}{lll}1 & J_{0} \\ 0 & J_{0} & \text { dosesnt disease }\end{array}\right.$

$$
b= \begin{cases}1 & \text { pos } \\ 0 & \text { roy }\end{cases}
$$

$$
\begin{aligned}
& p(a=1)=0.01 \\
& \begin{array}{l}
p(b=1 / a=1)=.95 \\
p(b=0) a=0)=.95
\end{array} \quad \Rightarrow P(a=1 \mid b=1)=\frac{P(b=1 / a=1) P(a=1)}{P(b=1 / a=1) P(a=1)+P(b=1 / a=0) P(a=0)} \\
&=\frac{.95 \cdot .01}{.95 \cdot .01+.05 . .99}
\end{aligned}
$$

$$
=\frac{95}{95+99.5} \approx 0.16
$$

You connot do inference who making assumptions
23 Forward is inverse probability
Fud:
Ex $2.4 \quad K$ balls $\quad B$ blat $\quad W=K-B$ white
dhow weplacement N times
a) $n_{B}=\operatorname{Bin}\left(F_{B}, N\right) \quad F_{B}=B / K$
b)

$$
\begin{array}{ll}
\mathbb{E}\left[n_{B}\right]=\frac{B}{K} \cdot N & B=2\left\{\begin{array}{ll}
N=5: 1, ~ & 4 / 5 \rightarrow \sigma=\frac{2}{5} \\
\operatorname{Var}\left[n_{B}\right]=N & \frac{B}{k}\left(1-\frac{B}{K}\right)
\end{array} \quad K=10\right\} \quad N=400: 80, \quad 64 \rightarrow \sigma=8
\end{array}
$$

Fud:
Ex 2.5

$$
z=\frac{\left(n_{B}-f_{B} N\right)^{2}}{N f_{B}\left(1-f_{B}\right)} \sim X^{2} \quad \text { (approx) }
$$

$\mathbb{E}[z]=1$

$$
N=5 \quad f_{B}=1 / 5 \Rightarrow \operatorname{Var}=4 / 5 \quad \mu=1
$$

only $n_{B}=1$ gives $E<1$

$$
P\left[n_{B}=1\right]=\binom{5}{1} / / 5 \cdot(1 / 5)^{4} \sim \frac{256}{625}-0.41
$$

Inv:
Ex 26 urns Urn u has u black, $10-u$ white
n_{B} blacks $N-n_{B}$ whites

$$
\begin{aligned}
& N=10 \\
& n_{B}=3 \\
& P\left(u, n_{B} \mid N\right)=P\left(n_{B} \mid N, u\right) P(u) \\
& P\left(u \mid n_{B}, N\right)=P\left(n_{B} \mid n, N\right) P(u)
\end{aligned}
$$

$$
\begin{aligned}
&\binom{N}{n_{B}} f_{n}^{n_{0}}\left(1-f_{N}\right)^{N-n_{B}} \\
& \Rightarrow P\left(u / n_{B} / N\right) \\
& P\left(n_{B}, N\right)=\frac{1}{R\left(n_{B}\right.}(N) \frac{1}{11}\binom{N}{n_{B}}\left(\frac{1}{10}\right)^{n_{B}}\left(\frac{11-u}{10}\right)^{N-n_{B}}
\end{aligned}
$$

can enal \& see it peaks rear $u=3$
Assuming now a new bell is drown

$$
\begin{aligned}
P\left(N+1 \text { is black } \mid n_{B_{-}}, N\right) & =\sum_{x} \underbrace{P\left(N+1 \text { is back } / \eta_{B,}, u, N\right)}_{\frac{u}{10}} P\left(u \mid n_{B, N}, N\right) \\
& \approx 0.333
\end{aligned}
$$

MAP would just give 3/10

Eg 2.7 Observe x_{H} in N tosses

$$
\mathbb{P}\left[N+1 \mid \& H / n_{H}, N\right]
$$

\rightarrow Need assumption (prior)
Ex 2.8 uniform prior

$$
\begin{aligned}
& \mathbb{P}\left[f_{H} \mid n_{H}, N\right]=\frac{P\left[n_{H} \mid f_{H}-N\right] P\left[f_{H}\right]}{\left.\Gamma n_{H} \mid N\right]} \\
& =f_{H}^{n_{H}}\left(1-s_{H}\right)^{N-n_{H}} \frac{(N+1)!}{n_{H}!\left(N-n_{H}\right)!} \\
& \mathbb{P}\left[N+1 \text { is heads } \mid n_{H}, N\right]=\int_{0}^{1} d f_{H} \underbrace{P\left[N+\mid \text { is heads } \mid s_{H}, n_{H}, N\right]}_{F_{H}} P\left[f_{H} \mid x_{H}, N\right] \\
& =\frac{(N+1)!}{n_{H}!\left(N-n_{H}\right)!} \int_{0}^{1} d f_{H} f_{H}^{n_{H}+1}\left(1-f_{H}\right)^{N-n_{H}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{(N+1)!}{(N+2)!n_{H}!\left(N-n_{H}\right)!}\left(n_{H}+1\right)!\left(N-n_{H}\right)! \\
&=\frac{n_{N}+1}{N+2} \\
& N=3 \quad n_{H}=0 \rightarrow \frac{1}{5} \\
& N=3 \quad n_{H}=2 \rightarrow \frac{3}{5} \\
& N=10 \quad n_{H}=3 \rightarrow \frac{4}{12}=1 / 3 \\
& N=300 \quad n_{H}=29 \rightarrow \frac{30}{302}
\end{aligned}
$$

2.9 Compress binary files \rightarrow Chapter 6
\rightarrow estimate $p(1)$ empirically
$\left.2.10\left|\begin{array}{l}A \\ 000 \mid\end{array}\right| \begin{gathered}B \\ 0.00\end{gathered} \right\rvert\,$

$$
P(A \mid \text { black })=\frac{P(\text { black } \mid A) P(A)}{P(\text { black })}=\frac{1 / 31 / 2}{1 / 2}=1 / 3
$$

likelihood primiple: $\quad \theta \rightarrow D$ generative

$$
p(D \mid \theta)
$$

After observing a particular D_{1}, all inferences and predictions should depend only on $p(D \mid Q)$
2.4 Entropy \& Related

$$
H(x)<\log \left|A_{x}\right|
$$

redundancy: $1-\frac{H(x)}{\log \left(A_{x}\right)}$
2.5 Decomposability of entropy

$$
H(\vec{p})=\mathcal{H}_{2}\left(p_{1}\right)+\left(1-p_{1}\right) H\left(\frac{p_{2}}{1-p_{1}} \frac{p_{3}}{1-p_{1}}, \cdots\right)
$$

keep
flipping
Guerally $H(\vec{p})=\mathcal{L}_{2}\left(p_{1}+\cdots+p_{m}, p_{m m_{1}}+\cdots+p_{t}\right)$

$$
\begin{aligned}
& +\left(p_{1}+\cdots+p_{m}\right) M\left(\frac{p_{1}}{p_{1}+\cdots+p_{m}}, \cdots, \frac{p_{m}}{p_{1}+\cdots+p_{m}}\right) \\
& +\left(p_{m+1}+\cdots+p_{z}\right) M\left(\frac{p_{m+1}}{p_{m+1}+\cdots p_{\tau}} \cdots, \frac{p_{I}}{p_{m+1}+\cdots+p_{t}}\right)
\end{aligned}
$$

$$
\text { Ex 213: } \begin{aligned}
\log 3 & +\frac{1}{3}[\log 10+\log 5+\log 21] \\
& \sim \log 30 \text { bits }
\end{aligned}
$$

2.6 Gibbs' inequality:

$$
D_{K C}(p \| q) \geq 0
$$

2.7 Jensen's inequality:
f conves

$$
\begin{aligned}
& f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \\
\Rightarrow & \mathbb{E}[f] \geq f\left(\mathbb{E}\left[x_{]}\right)\right.
\end{aligned}
$$

Ex 2.14: Prove by induction

$$
f\left(\sum p_{i} x_{i}\right) \leq p_{1} f\left(x_{1}\right)+\sum_{i=2} p_{i} f\left(\frac{\sum_{i=2} p_{i} x_{i}}{\sum_{i=2} p_{i}}\right)
$$

$$
\begin{aligned}
& -\mu_{1} v\left(x_{1}\right)+p_{2} f\left(x_{2}\right)+\sum_{i \geq 3} p_{i} f\left(\frac{i_{i 3} p_{i} n_{i}}{\sum_{i \geq 3} p_{i}}\right) \\
& \leq \sum p_{i} f\left(x_{i}\right)
\end{aligned}
$$

Ex 2.15: $\quad 3$ squares w/ $\begin{aligned} & \bar{A} \\ & \bar{l}=100 \\ & \bar{l}\end{aligned}$
$(\bar{l})^{2}=\bar{A} \Rightarrow$ all squares the some
Ex 216: a) $2,3,4,5 \cdots 10,11,123$ sum 552 dice $\frac{1}{36} \frac{2}{36} \frac{3}{36} \frac{4}{36} \cdots \frac{3}{36} \frac{2}{36} \frac{1}{36} 5$

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
\frac{1}{6} & \frac{4}{6} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{6} & & & \frac{4}{36} & \frac{2}{36}
\end{array}
$$

$$
\begin{array}{llll}
\frac{6}{36} & \frac{10}{36} & \frac{8}{36} & \frac{6}{36}
\end{array}
$$

b) mean $3.5 \cdot 100=350 \quad \tan \frac{35}{12} \cdot 100 \sim 292 \in$ Gaussian

$$
\frac{1}{3} \cdot\left(\frac{1}{4}+\frac{9}{4}+\frac{25}{4}\right)=\frac{35}{12}
$$

c) One ordinary 123456

Ore spiky 666000
d) Label $r^{\text {th }}$ dice by $\{0,12,3,45\}-6^{r}$ return

217

$$
\begin{aligned}
& \frac{p}{1-p}=\exp (a) \Rightarrow 1-p=p \exp (-a) \\
& 1=p(1+\exp (-a)) \\
& \Rightarrow p=\frac{1}{1+e^{-}}
\end{aligned}
$$

$2.18 \log \frac{P(x=1 \mid y)}{P(x=0 \mid y)}=\log \frac{P(y \mid x=1) p(x=1)}{P(y \mid x=0) p(x=0)} \quad \square$
$2.19 \quad d_{1} \perp d_{2} \mid x$

$$
\frac{P\left(x=1 /\left\{d_{i}\right\}\right)}{P\left(x=0 \mid\left\{d_{i}\right\}\right.}=\frac{P\left(d_{1} \mid x=1\right) P\left(d_{2} \mid x=1\right) P(x=1)}{P\left(d_{1} \mid x=0\right) P\left(d_{2} \mid x=0\right) P(x=0}
$$

 as $N \rightarrow \infty$ this Frae $\rightarrow 1$
2.21 स $f(x)=0.1 \cdot 10+0.2 .5+0.7 \cdot \frac{10}{7}=3$

$$
E_{p}^{1}=3
$$

$2.22 \mathbb{E}\left[\frac{1}{p}\right]=|A|$ aluays
$2.23 \quad 0.2$
2.24 $P[P(x) \in[0.15,0.5]]=0.2$

$$
P\left[\left|\log \frac{p(x)}{0.2}\right|>0.05\right]=p_{a}+p_{c}=0.8
$$

$2.25 H(x)=\mathbb{E} \log \frac{1}{p} \leq \log \mathbb{E} \frac{1}{p}=\log \left|A_{x}\right|$
$2.28 \quad H(X)=H_{2}(f)+F H_{2}(g)+(1-F) H_{2}(h)$

229 Pirectly: $\quad \rho(1)=1-1 / 2$

$$
H(X)=H(1)+1 / 2 H(2)+\cdots+\frac{1}{2} H(3)
$$

$$
\begin{aligned}
& 1 / 2 / 4 \\
& \begin{aligned}
1 / 8
\end{aligned} r(x)=\sum_{n=0}^{\infty} 2^{-n}-n \\
& \left.=\frac{2}{\partial x} \frac{1}{1-a} \right\rvert\, 1 / 2 \\
&=\frac{1}{1-\frac{1}{2}} \\
&=2
\end{aligned}
$$

$=2$
$2.30 \quad P\left[B_{2}=W\right]=\mathbb{P}\left[B_{1}=W\right] \cdot P\left[B_{2}=W \mid B_{1}=W\right]$

$$
\begin{aligned}
& \frac{\partial H(x)}{\partial f}=\log \frac{1-f}{f}+H_{2}(g)-H_{2}(i)
\end{aligned}
$$

$$
\begin{aligned}
& \left.226 \quad D_{k L}(P \| Q)=-\mathbb{E}\left(\log \frac{q}{p}\right) \geq-\log \mathbb{E} \right\rvert\,=0 \\
& 2.27-\sum_{\underline{x}} p(\underline{x}) \log p(\underline{x})=-\sum_{x_{1}} p\left(x_{1}\right) \sum p\left(x _ { 2 } \cdots (x _ { 1 }) \operatorname { l o g } p (x _ { 1 }) p \left(x_{0} \cdots\left(x_{1}\right)\right.\right. \\
& =-\sum_{x_{1}} p\left(x_{1}\right) \log p\left(x_{1}\right)-\sum_{x_{1}} \sum_{x_{2}-} p\left(x_{2} \cdots \mid x_{1}\right) \log p\left(x_{2} \cdots \mid x_{1}\right) \\
& H(X, Y)=H(X)+H(Y \mid X)
\end{aligned}
$$

$$
\begin{aligned}
& +P\left[B_{1}=B \cdot \mathbb{P}\left[P_{2}=W \mid B_{1}=B\right]\right. \\
& =\frac{W}{N} \frac{w-1}{N-1}+\frac{N-w}{N} \frac{w}{N-1}=\frac{w \cdot(W-1)}{N \cdot(-1)}=\frac{w}{N}
\end{aligned}
$$

2.31 $\frac{a}{b}$ chence of indersecting a live harizatally or vertidly
$\Rightarrow(1-\% / b)^{2}$ chance $o f$ beiry in a square
$232 \quad \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \frac{a \cos \theta}{b}=\frac{a}{b} \int_{-\frac{\pi}{2}}^{\pi / 2} \frac{d \theta}{7} \cos \theta=\frac{2 a}{b \pi}$

$$
x, y-x, 1-y
$$

2.33

$$
y^{a x+1 / 2}
$$

$$
\begin{aligned}
x+y-x>1-y \geq & y>1-y \\
x+11-y>y-x \geq & 1-y+x>y-x \\
1-y+y-x>x \quad & 1-x>x \\
& y-x<1 / 2 \\
& x<1 / 2 \\
& y>1 / 2
\end{aligned}
$$

$$
P=1 / 4
$$

$2.34 \mathbb{E}_{x}=\sum_{n=0}^{\infty} n z^{-n}=2$

$$
\langle f\rangle=\left\langle\frac{h}{h+t}\right\rangle=\left\langle\frac{1}{h+t}\right\rangle \Rightarrow \mathbb{E} \frac{1}{n}=\sum_{n=1}^{\infty} \frac{f(t)^{n-1}}{n}=\frac{f}{f-1} \log f
$$

235 a) Expronential dist

$$
\left.\begin{array}{l}
P(r)=\left(\frac{5}{6}\right)^{r-1} \frac{1}{6} \\
\mathbb{E}[r]=6
\end{array}\right\} \text { memorylers }
$$

$e^{-a r} \quad a=\operatorname{ly} \quad 6 / 5$
z
b) Still 6 (nemoryless)
c) Still 6
d) $6+6-1=11$
e) Yes. Mare likely to arrive in bigger open spot
2.36 a) $1 / 2$
b)

$2 / 3$	$F A B$
	$F B A$
	$A F B$
	$A F A$
	$A B F$
	$B A F$

2.37

$$
\begin{aligned}
P\left(1_{T} \mid 2_{T}\right) & =\frac{P\left(2 T 1_{T}\right) P\left(I_{T}\right)}{P\left(2_{T} \mid T\right) P(T)+P\left(2_{T} \mid I_{F}\right) P\left(I_{F}\right)} \\
& =\frac{1 / 3 \cdot 1 / 3}{1 / 3 \cdot 1 / 3+2 / 3 \cdot 2 / 3}=\frac{1}{5}
\end{aligned}
$$

2.38 1) $P=3 F^{2}(1-F)+f^{3}$
2)

$$
\begin{aligned}
& P(r=\infty)=1 / 2(1-f)^{(P=0)}+1 / 2 f^{3} \\
& P(r=001)=1 / 2 f(1-f)^{2}+1 / 2 f^{2}(1-f)=1 / 2 f(1-f) \\
& P(s=11000)=\frac{f^{3} \cdot 1 / 2}{\frac{1}{2}\left[(1-f)^{3}+f^{3}\right]}=\frac{f^{3}}{(1-f)^{3}+f^{3}} \\
& p(s=1 \mid 001)=\frac{(1-9) f^{2} \cdot 1 / 2}{\frac{1}{2} 5(1-5)}=f
\end{aligned}
$$

$$
\begin{aligned}
& =f^{3}+3 f^{2}(1-f)
\end{aligned}
$$

$2.39-\sum \frac{0.1}{i} \log _{2} \frac{0.1}{\pi} \sim 9.72$ bits/uard

Chapter 3

$$
\begin{aligned}
\text { Ex 3.1 } \quad \begin{aligned}
P(A \mid D) & =\frac{1}{2} \frac{3}{P} \frac{1}{1} \frac{3}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2}=\frac{9}{32} \Rightarrow B \\
P(A / D) & =\frac{9}{9+32}=\frac{9}{41}
\end{aligned}
\end{aligned}
$$

Ex 3.2

$$
\begin{aligned}
20^{7} \cdot P(A \mid D) & =3 \cdot 1 \cdot 2 \cdot 1 \cdot 3 \cdot 1 \cdot 1=18 \\
20^{2} P(B / D)= & =2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1 \cdot 2=2^{6}=64 \\
20^{2} P(C \mid D) & =1 \\
\frac{18}{83} & \frac{64}{83} \frac{1}{83}
\end{aligned}
$$

Ex 3.3

$$
\begin{aligned}
& P(x / \lambda)=\left\{\begin{array}{cc}
\frac{1}{\lambda} e^{-x / \lambda} z(\lambda) & 1-\lambda<20 \\
e l s e
\end{array}\right. \\
& P\left(\lambda /\{x \xi)=\frac{1}{(\lambda Z(\lambda))^{N}} \exp \left[-\frac{\sum_{n}}{x} x_{n} / \lambda\right] P(\lambda)\right. \\
& Z(\lambda)=\int_{1}^{20} d x \frac{e^{-x /}}{\lambda}=e^{-\lambda / \lambda}-e^{-20 \lambda}
\end{aligned}
$$

What you kan about λ after the data is what you bow before $P(\lambda)$ \& what the data told you $P(\beta x \xi \mid \lambda)$
λ is not stochastic. Rather we have a degree of belief

Ex 3.4

$$
\begin{gathered}
P(\theta)=.6 \\
P(A B)=.01 \\
P(\text { crime } \mid 0)=P(0 \mid \text { crine }) P(\text { crime })
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
p(D \mid S)=P_{A B}\left\{\begin{array}{l}
P(\theta) \\
p(D \mid 5)=2 P_{0} p_{A B} \\
P D(15)
\end{array}=\frac{1}{2_{0}}=\frac{1 / 2}{-6} P(\text { crime }) \leq P(\text { crime })\right.
\end{array} \\
& \text { Ex } 3,5 \quad P\left(p_{a} \mid a b a\right)=p_{a}^{2}\left(1-p_{a}\right)^{\prime} \\
& p\left(p_{a} \mid b b b\right)=\left(1-p_{a}\right)^{3} \\
& \left.P(a \mid s, F)=\frac{F_{a}+1}{F_{a}+F_{b}+2}\right\} \text { Laplace }
\end{aligned}
$$

Ex 3.6

$$
\begin{aligned}
& \frac{P(H, \mid s, F)}{P\left(L_{b} \mid \Sigma, F\right)}=\frac{\frac{F_{a}!F_{b}!}{\left(\bar{a}+F_{b}+1\right)!}}{p_{0}^{F_{a}}\left(1-p_{a}\right)^{F_{b}}} \\
& \Rightarrow \log \frac{P\left(d_{1} \mid s\right)}{P\left(d_{D} \mid \varepsilon\right)}=-\log \binom{F}{F_{a}}-\log (F+1)-\log p_{0}^{F_{a}}\left(1 p_{0}\right)^{F_{b}} \\
& =F \cdot \log ^{2} p_{a} F+F_{b} \lg A_{B} F-F \lg F+\frac{1}{2} \operatorname{ly} 2 \pi \frac{F_{a} F_{b}}{F} \\
& -F_{a} \log p_{0}-F_{b} \log \left(1-p_{0}\right)-\log (F+1) \\
& =F\left(p_{a} \log p_{a}+p_{b} \lg p_{b}\right)+\frac{1}{2} \lg \left(2 \pi p_{a} p_{b} F\right) \\
& =F\left(p_{a} \lg \frac{p_{a}}{p_{0}}+\log \frac{p_{b}}{1-p_{0}}\right)+\frac{1}{2} \lg \left(2 \pi p_{0} p_{i} F\right) \\
& =F D_{K L}\left(P_{a} \|_{B}\right)-\frac{1}{2} \log \left(\sqrt{F}+\frac{1}{\sqrt{F}}\right)
\end{aligned}
$$

$3.7 \quad F_{a}=p_{a} F \pm \sqrt{F p_{A}\left(1-p_{A}\right)}$
\rightarrow Make pots of evidence

3.8 Monty Hall: switch

39 Forthpuake MH: no need
$3.10 \quad l, m, n$ are the sexes

$$
l=1 \Rightarrow \begin{cases}m=0 & n=0 \\ m=1 & x=0 \\ m=0 & n=1\end{cases}
$$

$\Rightarrow \frac{2}{3}$ chance of 2 girls 1 boy
$\frac{1}{3}$ chance of I girl 2 boys
3.11

$$
\begin{array}{ll}
P(h \mid m=1)=0.28 & P(b \mid h=0)=0.02 \\
\text { missend munderde } & P(b \mid h=1)=0.9
\end{array}
$$

$$
\begin{aligned}
P(h \mid h=1, m=1) & =\frac{P(b=11 h=1) \cdot P(h-1(m=1)}{P(b=1 \mid h=1) P(h=11 m=1)+P(b=1 \mid h=0) P(h=01 m=1)} \\
& =\frac{0.9 \cdot 0.28}{} \approx 95 \%
\end{aligned}
$$

$$
0.9 \cdot 0.28+0.02 \cdot 0.72
$$

$3.12 \quad P(D / H=0)=1 \quad P(D \mid H=1)=1 / 2$
rigizial was wite

$$
\begin{aligned}
\Rightarrow P(H=0 / D) & =\frac{1 \cdot 1 / 2}{3 / 4}=2 / 3 \\
P(H=1 / D) & =1 / 3
\end{aligned}
$$

3.13

$$
\begin{aligned}
& P\left(D \mid H_{0}\right)=1 \\
& P\left(D \mid \mu_{1}\right)=\alpha
\end{aligned}
$$

$\approx \frac{75000}{10^{6}}-0.01$ (Fewer if $Y+4$ (

$$
\Rightarrow \frac{P(D \mid \not G)}{P\left(D \mid \delta H_{1}\right)} \approx 10^{3}
$$

if prion was so so

$$
P\left(\mathscr{H}_{9} \mid D\right)=\frac{1}{1-\frac{P\left(D \mid X_{1}\right)}{P\left(D \mathscr{H}_{6}\right)}} \approx 0.94
$$

$3.14 \quad 1 / 3$ prob
$3.15 \quad x_{0} \Rightarrow p_{0}=1 / 2$
$x_{1} \Rightarrow$ biased, w uniform prior on bias

$$
\frac{P(D \mid \mathcal{H})}{P\left(D \mid \mathcal{L}_{0}\right)}=\frac{\frac{140!110!}{25!!}}{(k)^{250}} \approx 0.48
$$

Tweaking to Beta prior:

$$
\frac{P\left(D \mid \mathscr{\alpha}_{\alpha}\right)}{P\left(D \mid \alpha_{0}\right)}=2^{250} \frac{\Gamma(\mid Y \theta+\alpha) 1(11 v+\alpha)}{\Gamma(250+2 \alpha)} \frac{V(2 \alpha)}{\Gamma(\alpha)^{2}}
$$

ratio is ≤ 1 for $\alpha<3$ and nuer $\rightarrow 2$

If 141, 109, get p-val of 0.05 but μ, is even less likdy under wisorm prior
\Rightarrow Don't be a frequentist!

